Compare Products

Hide

Clear All

VS

RG-S6120-20XS4VS2QXS Switches - 1
RG-S6120-20XS4VS2QXS Switches - 2
RG-S6120-20XS4VS2QXS Switches - 3
RG-S6120-20XS4VS2QXS Switches - 4
RG-S6120-20XS4VS2QXS Switches - 5
RG-S6120-20XS4VS2QXS Switches - 6
RG-S6120-20XS4VS2QXS Switches - 7
RG-S6120-20XS4VS2QXS Switches - 8
RG-S6120-20XS4VS2QXS Switches - 9
RG-S6120-20XS4VS2QXS Switches - 10
RG-S6120-20XS4VS2QXS Switches - 11
RG-S6120-20XS4VS2QXS Switches - 1
RG-S6120-20XS4VS2QXS Switches - 2
RG-S6120-20XS4VS2QXS Switches - 3
RG-S6120-20XS4VS2QXS Switches - 4
RG-S6120-20XS4VS2QXS Switches - 5
RG-S6120-20XS4VS2QXS Switches - 6
RG-S6120-20XS4VS2QXS Switches - 7
RG-S6120-20XS4VS2QXS Switches - 8
RG-S6120-20XS4VS2QXS Switches - 9
RG-S6120-20XS4VS2QXS Switches - 10
RG-S6120-20XS4VS2QXS Switches - 11
Picture

RG-S6120-20XS4VS2QXS 20-Port 10G (Compatible with 2.5G) Layer 3 Managed Core and Aggregation Switch

A Red Dot Design Award winner. Recommended core or aggregation switch for small and medium-sized enterprise deployment.

Models
Series
Highlight Features
  • Rich port types, 20 x 10G SFP+ ports (Compatible with 2.5G), 4 x 25G SFP28 ports, and 2 x 40G QSFP+ ports for uplink
  • VSU virtualization, flexible networking and high performance
  • Hardware redundancy, guaranteed service continuity and network connectivity
  • Network security policies and real-time monitoring, delivering enhanced network robustness
  • Abundant QoS policies for flexible resource allocation, congestion is a thing of the past
  • Multiple management modes, simple and easy maintenance
Sales Enquiry
Key Specification View More
Features

Layer 3 All-Optical 10G Core & Aggregation Switch
RG-S6120-20XS4VS2QXS

Recommended aggregation switch for large-sized networks, or core switch for small and medium-sized networks. With 20 x 10G SFP+ ports and 4 x 25G SFP28 ports, the switch provides flexible access capabilities. The 2 x 40G QSFP+ uplink ports deliver high-speed uplink connectivity, fully satisfying the requirements of high-performance networks.

VSU Virtualization, Flexible Networking and High Performance

Millisecond Failover

High Scalability

Simplified Networking

The VSU connects to peripherals through an aggregate link, realizing service switching in milliseconds upon a failure.

Hardware Redundancy, Guaranteed Service Continuity
and Network Connectivity

Hot-Swappable Power Modules + Intelligent Fan Modules

Hardware-Level Boot Redundancy

Optical Port Fault Isolation

Power modules can be replaced without affecting device operation. Intelligent fan speed regulation is supported for efficient cooling,
providing dual protection for the network.

Network Security Policies and Real-Time Monitoring, Delivering Enhanced Network Robustness

CPP

NFPP

CPP protects the CPU from data attacks to ensure CPU stability under high usage, achieving significant improvement in the device's security performance.

Abundant QoS Policies for Flexible Resource Allocation,
Making Congestion a Thing of the Past

With multi-plane flow classification and control capabilities for MAC flow, IP flow and application flow, accurate resource allocation for multi-service traffic makes congestion a thing of the past, delivering high-quality networks.

Managed by the INC Controller to Achieve Easy and Efficient O&M Management

The switch automatically completes registration and
configuration after it accesses the all-optical network, achieving
plug and play, no commissioning and fast onboarding.
A switch can be flexibly replaced based on service needs
without reconfiguration. Service ports supports auto-sensing,
achieving automatic O&M.

Fast Onboarding

Zero Touch Replacement

Specifications

Hardware Specifications

RG-S6120-20XS4VS2QXS

Interface Specifications

Fixed port

20 x 1G/2.5G/10G SFP+ ports, 4 x 10G/25G SFP28 ports, 2 x 40G QSFP+ ports

One switch provides a maximum of 32 x 10G ports, 2 modular power slots, and 2 modular fan slots.

Fan module

2 x pluggable fan modules, and fan speed regulating and alarm function

Power modules

2 x power module slots

Fixed management ports

1 x MGMT port, 1 x console port, and 1 x USB 2.0 port

System Specifications

System packet forwarding rate *

678 Mpps

System switching capacity *

912 Gbps

Number of MAC addresses

Number of global MAC addresses: 32,768

Number of static MAC addresses: 1,000

ARP table size

16,000

ND table size

4,000

Number of IPv4 unicast routes

16,000

Number of IPv4 multicast routes

4,000

Number of IPv6 unicast routes

16,000

Number of IPv6 multicast routes

2,000

Number of ACEs

Maximum number of ingress ACEs associated with an SVI, physical interface, or aggregate interface: 2,500

Maximum number of egress ACEs associated with an SVI, physical interface, or aggregate interface: 1,000

Number of VSU members

2

Number of IGMP groups

4,000

Number of MLD groups

1,024

Number of VRFs

100

Dimensions and Weight

Dimensions (W x D x H)

442 mm × 330 mm × 43.6 mm (17.40 in. x 12.99 in. x 1.72 in.), 1 RU

Weight (full load)

5.7 kg (12.57 lbs)

CPU and Storage

CPU

1.25 GHz ARM processor

Storage

Flash memory: 1 GB

Data packet buffer

4MB

Power and Consumption

Maximum power consumption

< 85 W

Rated input voltage

● RG-PA150I-F:

AC input:

Rated voltage range: 100–240 V AC; 50/60 Hz

Rated input current: 3 A

 

HVDC input:

Rated voltage: 240 V DC

Rated current per circuit: 3 A

 

● RG-PD150IB-F:

DC input: -48 V DC to -60 V DC

Maximum input voltage

● RG-PA150I-F:

AC input: 90–264 V AC; 47/63 Hz

HVDC input: 192–288 V AC

● RG-PD150IB-F:

DC input: -36 V DC to -75 V DC

Environment and Reliability

MTBF

> 200,000 hours

Primary airflow

Front-to-rear airflow

Operating temperature

0°C to 50°C (32°F to 122°F)

Storage temperature

–40°C to +70°C (–40°F to +158°F)

Operating humidity

10% to 90% RH (non-condensing)

Storage humidity

5% to 90% RH (non-condensing)

Maximum operating altitude

5000 m (16404.20 ft.)

Operating noise

< 78 dB

Interface surge protection

Power module: 6 kV

* System packet forwarding rate means the system's packet forwarding rate

* System switching capacity means the system's switching capacity



Software Specifications

RG-S6120-20XS4VS2QXS

Ethernet Switching

Jumbo frame (maximum length: 9,216 bytes)

IEEE 802.1Q (supporting 4K VLANs)

Maximum number of VLANs that can be created: 4,094

Voice VLAN

Super-VLAN and private VLAN

MAC address-based, port-based, protocol-based, and IP subnet-based VLAN assignment

GVRP

Basic QinQ and selective QinQ

STP (IEEE 802.1.d), RSTP (IEEE 802.1w), and MSTP (IEEE 802.1s)

ERPS (G.8032)

LACP (IEEE 802.3ad)

LLDP/LLDP-MED

IP Service

Static and dynamic ARP

DHCP server, DHCP client, DHCP relay, and DHCP snooping

DNS

DHCPv6 Client, DHCPv6 relay, and DHCPv6 snooping

Neighbor Discovery (ND) and ND snooping

IP Routing

Static routing

RIP and RIPng

OSPFv2 and OSPFv3

GR

IS-IS

BGP4 and BGP4+

BGP4 and MP-BGP

Equal and Weighted Cost Multi-Path (ECMP)

IPv4/IPv6 VRF

IPv4/IPv6 PBR

Multicast

IGMPv1/v2/v3 and IGMP proxy

IGMPv1/v2/v3 snooping

IGMP filtering and IGMP fast leave

PIM-DM, PIM-SM, and PIM-SSM

PIM-SSM for IPv4 and IPv6

MLDv1/v2

MLDv1/v2 snooping

MSDP

PIM-SMv6

Multicast source IP address check

Multicast source port check

Validity check of IGMP packets

Multicast querier

ACL and QoS

Standard IP ACLs (hardware ACLs based on IP addresses)

Extended IP ACLs (hardware ACLs based on IP addresses or TCP/UDP port numbers)

Extended MAC ACLs (hardware ACLs based on source MAC addresses, destination MAC addresses, and optional Ethernet type)

Expert-level ACLs (hardware ACLs based on flexible combinations of the VLAN ID, Ethernet type, MAC address, IP address, TCP/UDP port number, protocol type, and time range)

Time-based ACLs

ACL80 and IPv6 ACL

Applying ACLs globally (hardware ACLs based on flexible combinations of the VLAN ID, Ethernet type, MAC address, IP address, TCP/UDP port number, protocol type, and time range)

ACL redirection

Port traffic identification

Port traffic rate limiting

802.1p/DSCP/ToS traffic classification

Traffic classification based on 802.1p priorities, DSCP priorities, and IP precedences

Traffic classification based on ToS values

Congestion management: SP, WRR, DRR, WFQ, SP+WRR, SP+DRR, and SP+WFQ

Congestion avoidance: tail drop, RED, and WRED

Eight queues on each port

Rate limiting in each queue

Security

AAA

RADIUS and TACACS+

Filtering of invalid MAC addresses

Broadcast storm suppression

Hierarchical management of administrators and password protection

BPDU guard

RADIUS authentication and authorization

Port- and MAC address-based 802.1x authentication

IEEE802.1X authentication, MAC address bypass (MAB) authentication, and interface-based and MAC address-based 802.1X authentication

Web authentication

Hypertext Transfer Protocol Secure (HTTPS)

SSHv1 and SSHv2

ICMPv6

IPv6 addressing and Path MTU Discovery

Port security

IP source guard

SAVI

ARP spoofing prevention

CPP and NFPP

Various attack defense functions including NFPP, ARP anti-spoofing, DHCP/DHCPv6 attack defense, ICMP attack defense, ND attack defense, IP scanning attack defense, and customizing attack defense packet types

Loose and strict RPF

uRPF ignoring default routes

Reliability

REUP

Rapid Link Detection Protocol (RLDP), Layer 2 link connectivity detection, unidirectional link detection, and VLAN-based loop control

Data Link Detection Protocol (DLDP)

IPv4 VRRP v2/v3 and IPv6 VRRP

BFD

GR for RIP, OSPF, BGP, and other routing protocols

Power modules in 1+1 redundancy mode

Hot swapping of power modules and fan modules

Device virtualization

VSU

NMS and maintenance

SPAN, RSPAN, and ERSPAN

sFlow

NTP, SNTP, and NTP for IPv6

FTP and TFTP

FTP/TFTP v6

SNMP v1/v2/v3

SNMP over IPv6

RMON (1, 2, 3, 9)

Various types of RMON groups, including event groups, alarm groups, history groups, and statistics groups, as well as private alarm extension groups

RMON used to implement Ethernet statistics, historical statistics, and alarm functions

NETCONF

Flow-based mirroring, and N:1 and 1:N port mirroring

CWMP

gRPC

OpenFlow Special 1.3

Flow table analysis defined by all protocols

Transmission of specified packets to the controller

Configuring the controller's IP address and port

Notifying port status changes to the controller

CLI (Telnet/console)

Syslog

IPv6 MIB support for SNMP

Telnet v6

Traceroute v6

 DNS v6

Note: The item marked with the asterisk (*) will be available in the future.

Show More
Resources All Resources
Learn about Products or Solutions
Installation
Software and Configuration
Order Information

Switches and Power Modules

Model

Description

RG-S6120-20XS4VS2QXS

20 x 1G/2.5G/10G SFP+ optical ports, 4 x 10G/25G SFP28 optical ports, and 2 x 40G QSFP+ optical ports, and up to 32 10G ports

2 x power module slots (at least one RG-PA150I-F power module needs to be configured)

2 x fan module slots (the device is equipped with two fan modules upon delivery)

RG-PA150I-F

150 W AC power module that applies to the RG-S6120-20XS4VS2QXS

RG-PD150IB-F

Power module (support redundancy, DC, 150W ,10 A)


GE Optical Module

Model

Description

Mini-GBIC-GT

1000BASE-GT mini GBIC module

MINI-GBIC-SX-MM850

1000BASE-SX, SFP transceiver, SM (850 nm, 500 m, LC).

MINI-GBIC-LX-SM1310

1000BASE-LX, SFP transceiver, SM (1310 nm, 10 km, LC)

MINI-GBIC-LH40-SM1310

1000BASE-LH, SFP transceiver, SM (1310 nm, 40 km, LC)

MINI-GBIC-ZX80-SM1550

1000BASE-ZX80, SFP transceiver, SM (1550 nm, 80 km, LC)

GE-SFP-LX20-SM1310-BIDI

SFP BIDI Transceiver-TX1310/RX1550, 20 km, LC

GE-SFP-LX20-SM1550-BIDI

SFP BIDI Transceiver-TX1550/RX1310, 20 km, LC

GE-SFP-LH40-SM1310-BIDI

SFP BIDI Transceiver-TX1310/RX1550, 40 km, LC

GE-SFP-LH40-SM1550-BIDI

SFP BIDI Transceiver-TX1550/RX1310, 40 km, LC


2.5
GE Optical Module

Model

Description

2.5G-SFP-LX03-SM1310-BIDI-I

SFP 2.5G BIDI Transceiver-TX1310/RX1550,3km,LC

2.5G-SFP-LX03-SM1550-BIDI-I

SFP 2.5G BIDI Transceiver-TX1550/RX1310,3km,LC


10GE Optical Modules

Model

Description

XG-SFP-SR-MM850

10GE LC connector module, applicable to the SFP+ port

62.5 μm/125 μm: 33 m

50 μm/125 μm: 66 m

Modal bandwidth of 2000 MHz·km for a link length of up to 300 meters

XG-SFP-LR-SM1310

10GE LC connector module with a link length of up to 40 km, 1310-nm wavelength, applicable to the SFP+ port

XG-SFP-ER-SM1550

10GE LC connector module with a link length of up to 40 km, 1550-nm wavelength, applicable to the SFP+ port

XG-SFP-AOC1M

10GE SFP+ port cable, 1 m, including one cable and two interface modules

XG-SFP-AOC3M

10GE SFP+ port cable, 3 m, including one cable and two interface modules

XG-SFP-AOC5M

10GE SFP+ port cable, 5 m, including one cable and two interface modules


25G Optical Modules

Model

Description

VG-SFP-SR-MM850

25GE SR, SFP28, 850-nm wavelength, 100 m over MMF

VG-SFP-LR-SM1310

25GE LR, SFP28, 1310-nm wavelength, 10 km over SMF

VG-SFP-AOC5M

25GE SFP+ active optical cable, 5 m, including two modules


4
0G Optical Modules

Model

Description

40G-QSFP-SR-MM850

40GE SR, QSFP+ transceiver, applicable to QSFP+ ports

OM3 and OM4 MMF, MPO, 8-core, 850-nm wavelength, 100 m over OM3 MMF or 150 m over OM4 MMF

40G-QSFP-LR4 SM1310

40GE LR4, QSFP+ transceiver, LC, 1310-nm wavelength, 2-core, 10 km over SMF, applicable to QSFP+ ports

40G-AOC-5M

40GE QSFP+ active optical cable, 5 m, including one cable and two interface modules

40G-AOC-10M

40GE QSFP+ active optical cable, 10 m, including one cable and two interface modules

Show More
Tips: Product information and performance will be affected by upgrade iteration, specific environment and other factors, so FAQ content is for reference only. For further information, please contact online support.
How would you rate your experience on this page?
Very disatisfying
Very satisfying
If you would like to offer more comment, please type in the textbox below, that would be helpful for the improvement of this page.
Submit
Thank you for your feedback!

Ruijie Networks websites use cookies to deliver and improve the website experience.

See our cookie policy for further details on how we use cookies and how to change your cookie settings.

Cookie Manager

When you visit any website, the website will store or retrieve the information on your browser. This process is mostly in the form of cookies. Such information may involve your personal information, preferences or equipment, and is mainly used to enable the website to provide services in accordance with your expectations. Such information usually does not directly identify your personal information, but it can provide you with a more personalized network experience. We fully respect your privacy, so you can choose not to allow certain types of cookies. You only need to click on the names of different cookie categories to learn more and change the default settings. However, blocking certain types of cookies may affect your website experience and the services we can provide you.

  • Performance cookies

    Through this type of cookie, we can count website visits and traffic sources in order to evaluate and improve the performance of our website. This type of cookie can also help us understand the popularity of the page and the activity of visitors on the site. All information collected by such cookies will be aggregated to ensure the anonymity of the information. If you do not allow such cookies, we will have no way of knowing when you visited our website, and we will not be able to monitor website performance.

  • Essential cookies

    This type of cookie is necessary for the normal operation of the website and cannot be turned off in our system. Usually, they are only set for the actions you do, which are equivalent to service requests, such as setting your privacy preferences, logging in, or filling out forms. You can set your browser to block or remind you of such cookies, but certain functions of the website will not be available. Such cookies do not store any personally identifiable information.

Accept All

View Cookie Policy Details

Contact Us

Contact Us

How can we help you?

Contact Us

Get an Order help

Contact Us

Get a tech support